
The Toymakers @ tymkrs.com
Questions? Please contact us:

feedback@tymkrs.com

DATASHEET

Count Me
7 Segment Display Kit

The Count Me kit is a 8 digit 7-
segment display kit controlled by

only 5 wires!

• Kit Type: Through-hole soldering
• Assembly instructions: In datasheet
• Function: 8 digit 7-segment display module
• This 7-segment display module allows easy shift register control of 8 digits.

KIT CONTENTS

Contents of the Count Me Kit:

• Count Me printed circuit board (93.01 x 35.68 x 1.60mm)
• 2 1x8 Female Headers
• 4 1x2 Male Headers

Electrical Components:

Reference Quantity Type Value

R1 - R3 3 Resistor, 1/4W 1k ohm

R4 - R19 16 Resistor, 1/4W 100 ohm

U1 - U3 3 Serial to Parallel Shift Register 74HC595

U4 - U5 2 4 Digit 7-Segment Displays Common Cathode

Absolute Maximum Ratings

75HC595 Shift Register Maximal Operating Conditions
Datasheet: http://www.nxp.com/documents/data_sheet/74HC_HCT595.pdf

Parameter Maximal Ratings Unit

Supply Voltage -0.5 – +7.0 V

Operating Temperature -40 to +125 ºC

Output Current (Qn) +/- 35 per pin mA

Supply Current 70 mA

Note: Absolute maximum ratings are stress ratings only and functional device operation is not
implied. The device could be damaged beyond Absolute maximum ratings.

Tools and material required for assembly (not included with the kit):

• Soldering iron
• Solder
• Wire clippers

User provided items required for function:

• Microcontroller sending serial data to the shift register to control information displayed by
the 7-segment displays.

Mounting Holes:

Additional physical/electrical specifications:

• Printed Circuit Board size: 3.66 x 1.41 x 0.063" (93.01 x 35.86 x 1.60mm)
• PCB thickness: 0.063" (1.60mm), not including any components
• PCB thickness: 0.472" (12mm), max height with all components
• Mounting holes: 4 holes provided. 1X2 header holes in all four corners are available as

well.

Board Connections:

Additional Photo:

PCB on Professional Propeller
Development Board

Assembly Instructions

Build Notes:

Note, the following instructions can be done in pretty much any order. I personally place all of the
components on before soldering, but you are welcome to put in a component, solder it, then repeat
with the rest of the components.

Step 1: Put in the components!

R1 - R3: 1k ohm Resistor

These 3 resistors go into R1 - R3 slots
– polarity does not matter. (Brown-

Black-Black-Brown-Brown)

R4 - R19: 100 ohm capacitor

These resistors go into R4 – R19 slots
– polarity does not matter (Brown –

Black – Black – Black - Brown)

U1 – U3: 74HC595

Be sure to line the divot in the chip to
the graphic on the board!

DIP sockets can be soldered into the
PCB so that the shift registers can be

changed if necessary.

U4 - U5: 7-segment displays

Make sure to solder these with the
decimal points facing the bottom of the

board.

1x8 Female Headers

These are to be soldered on the ends!
We suggest soldering them facing

upwards.

Step 2: Solder the electrical components in!

I use 60/40 0.38mm gauge solder for
these pads. But also have 1.3mm

gauge solder for the larger solder pads.

Step 3: Trim the extra leads off of the electrical components!

Once you're done soldering the
components, it's a good idea to clean

up all of the extra leads from the
electrical components. We use a

spare pair of nail clippers – it works
quite easily!

Helpful Links

• Driver OBJ: http://obex.parallax.com/object/102
• Assembly Video: https://www.youtube.com/watch?v=ih0g9t6YMRc
• http://tymkrs.tumblr.com/post/54105338290/tymkrs-count-me-7-segment-led-

display-kit

http://obex.parallax.com/object/102
http://tymkrs.tumblr.com/post/54105338290/tymkrs-count-me-7-segment-led-display-kit
http://tymkrs.tumblr.com/post/54105338290/tymkrs-count-me-7-segment-led-display-kit
https://www.youtube.com/watch?v=ih0g9t6YMRc

Example Code

───
File: CountMe_Simple_74HC595_Demo.spin
Version: 1.0
Copyright (c) 2015 Tymkrs
See end of file for terms of use.

Author: Whisker 'http://tymkrs.com/code/CountMe_Simple_74HC595_Demo.spin
───

{
HISTORY:
 This object is made as an example for using the CountMe ToyMod kit from
http://tymkrs.com/

USAGE:

 • Connect CountMe pins Latch, Clock, and Serial to
 Propeller Pins Latch_Pin, Clock_Pin, and Serial_Pin

 • Connect CountMe pins Vcc to +3vdc and Vss to GND
 (Vcc to +5vdc will result in brighter displays. Maybe too bright? Your
call!)
}

Con

 'Initialize the system clock speed

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 Latch_Pin = 3
 Clock_Pin = 4
 Serial_Pin = 5

OBJ

 'Include the driver for the 595 shift registers

 Shift : "Simple_74HC595"

Var

 'Allocate hub memory space in which to run the Display refresh loop
 long DisplayStack[32]

 'Allocate space for the eight character offsets
 'Used to select which characters to Print on the display
 byte ScreenA[4]
 byte ScreenB[4]

Pub Main | Index, OnesPlace, TensPlace, SixteensPlace

 'Start the Simple 74HC595 driver object in a new cog
 Shift.init(Clock_Pin, Latch_Pin, Serial_Pin)

 'Start the Display refresh loop in a new cog, allowing you to print characters
to the screen from any routine
 cognew(Display, @DisplayStack)

 repeat

 repeat Index from 0 to 7

 'Here is an easy way to print strings onto the display
 'Supports these characters: 0123456789AbcdEFghijKlnopqrStuyZ _-.[]=|
CILNORUV
 case Index
 0:
 Print(String("count "))
 1:
 Print(String("pLAy "))
 2:
 Print(String("StOp "))
 3:
 Print(String("run "))
 4:
 Print(String("SIgNAL "))
 5:
 Print(String("dEAd "))
 6:
 Print(String("bEEF "))
 7:
 Print(String("intro "))

 'Here is an easy way to count to 99 on the display
 repeat TensPlace from 0 to 9
 repeat OnesPlace from 0 to 9
 ScreenB[0] := OnesPlace
 ScreenB[1] := TensPlace
 waitcnt((clkfreq / 32) + cnt)

 'Here is an easy way to count to 255 in hexadecimal on the display
 repeat SixteensPlace from 0 to 15
 repeat OnesPlace from 0 to 15
 ScreenB[0] := OnesPlace
 ScreenB[1] := SixteensPlace
 waitcnt((clkfreq / 4) + cnt)

Pub Print(Message) | CharIndex, MapIndex

 'This function compares each character in the Message to characters in
CharacterMapKey
 'If it a match is found, the offset of the match is stored into ScreenA or
ScreenB (depending on which half of the Message the character is in)

 repeat CharIndex from 0 to 4
 repeat MapIndex from 0 to 47
 if BYTE[Message][CharIndex] == CharacterMapKey[MapIndex]
 ScreenA[3 - CharIndex] := MapIndex
 quit
 repeat CharIndex from 0 to 4
 repeat MapIndex from 0 to 47
 if BYTE[Message][CharIndex + 4] == CharacterMapKey[MapIndex]
 ScreenB[3 - CharIndex] := MapIndex
 quit

Pub Display | Index

 'This function runs in its own cog, constantly updating the shift registers
 'The display is a common cathode matrix
 'Only a single digit should be enabled on each screen at any time

 'Using the offsets stored in ScreenA and ScreenB, the CharacterMap table, and

one of the four DigitEnableMasks it builds a 24 bit number which is shifted out
to the 595s

 'The format of this number is:
 'Bits 0-7 Digit Enable Bits (low is on)
 'Bits 8-15 Screen B Segment Enable Bits (high is on)
 'Bits 16-23 Screen A Segment Enable Bits (high is on)

 repeat
 repeat Index from 0 to 3
 Shift.Out(CharacterMap[ScreenA[Index]] << 16 |
CharacterMap[ScreenB[Index]] << 8 | DigitEnableMask[Index])

Dat

 'Used by Print to find the offsets for each supported character
 CharacterMapKey byte "0123456789AbcdEFghijKlnopqrStuyZ _-.[]=|
CILNORUV"

 'Segment enable bit masks for each of the 48 supported characters
 'The format for this pattern is:
 'Dot, Middle, Top Left, Bottom Left, Bottom, Bottom Right, Top Right, Top
 'High is enabled

 CharacterMap byte %00111111, %00000110, %01011011, %01001111,
%01100110, %01101101, %01111101, %00000111, %01111111, %01101111, %01110111,
%01111100, %01011000, %01011110, %01111001, %01110001, %01101111, %01110100,
%00000100, %00001110, %01110110, %00110000, %01010100, %01011100, %01110011,
%01100111, %01010000, %01101101, %01111000, %00011100, %01101110, %01011011,
%00000000, %00001000, %01000000, %10000000, %00111001, %00001111, %01001000,
%00110110, %01100001, %00000010, %00111000, %00100011, %01100011, %00100001,
%01100010, %00111110

 'Digit enable bit masks for each of the four digits. Enables the digit on both
Screens.
 'The format for this pattern is:
 'Digit 0 Screen A, Digit 1 Screen A, Digit 2 Screen A, Digit 3 Screen A, Digit
0 Screen B, Digit 1 Screen B, Digit 2 Screen B, Digit 3 Screen B
 'Low is enabled

 DigitEnableMask byte %01110111, %10111011, %11011101, %11101110

{{
┌──┐

│ TERMS OF USE: MIT License │
├──┤
│Permission is hereby granted, free of charge, to any person obtaining a copy of this │
│software and associated documentation files (the "Software"), to deal in the Software │
│without restriction, including without limitation the rights to use, copy, modify, │
│merge, publish, distribute, sublicense, and/or sell copies of the Software, and to │
│permit persons to whom the Software is furnished to do so, subject to the following │
│conditions: │
│ │
│The above copyright notice and this permission notice shall be included in all copies │
│or substantial portions of the Software. │
│ │
│THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, │
│INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A │
│PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT │
│HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION │
│OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE │
│SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. │
└──┘
}}

